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The dependence of spin-up in a rectangular tank on deformation of the free surface is
investigated experimentally. The results agree with earlier experimental and numerical
data about the motion of vortices over topography. However, the presence of sidewalls
appears to interact with the vortex drift induced by the surface topography. This
combined effect provides a qualitative explanation for the observed behaviour of
individual vortices. In particular, in the presence of free-surface deformation, cyclonic
vortices in an elongated rectangle tend to drift away from the centre of the tank, so
that their merging in the centre is discouraged.

1. Introduction
The spin-up of a homogeneous fluid in a container from one state of solid-

body rotation to another is a fundamental problem in rotating fluid dynamics. Most
previous studies on this subject concerned the flow in a tank with circular cross-section
(Greenspan & Howard 1963; Wedemeyer 1964; Weidman 1976; van de Konijnenberg
& van Heijst 1995). Such flows remain azimuthally symmetric and acquire a higher
angular velocity through a weak secondary flow in the radial direction driven by
Ekman layers at the bottom and, if present, at the lid of the container. By the
vortex stretching coupled with this radial motion, the flow relative to the rotating
tank can be proven to decay on a time scale H/(νΩ)1/2, with H the depth, ν the
kinematic viscosity and Ω the final angular velocity (Greenspan & Howard 1963).
Recently, the spin-up in containers with non-circular cross-sections has become the
subject of investigation (van Heijst 1989; van Heijst, Davies & Davis 1990; van
de Konijnenberg et al. 1994; Suh 1994). Spin-up flows in non-circular tanks are
generally characterized by separation from the sidewall, a phenomenon caused by
a pressure gradient along the sidewall of the initial flow field. This boundary-layer
detachment provides an efficient mechanism for the transport of sidewall vorticity to
the interior of the flow, leading to the formation of vortices and the break-up of the
initial flow field. Despite possible three-dimensional instabilities at the beginning of
the experiment, the flow is soon stabilized by its rotation, and becomes approximately
two-dimensional. Owing to the self-organizing property of two-dimensional flows, the
velocity field usually evolves into a pattern consisting of a small number of vortices
rotating in either direction, with dimensions comparable to the width of the tank.
During the spin-up process, a secondary flow induced by Ekman pumping persists,
providing a damping mechanism for the two-dimensional vortex motion. In a typical
laboratory experiment, the damping time scale of this Ekman pumping is larger than
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the time scale on which the two-dimensional vortex motions take place. For the
flow in early stages, therefore, properties such as boundary layer separation, vortex
motion and self-organization can be understood qualitatively without taking Ekman
pumping into account. For the flow in later stages, however, the Ekman suction
becomes important, in particular for the relation between the vorticity ω and stream
function ψ of the organized flow.

The spin-up in a rectangular tank was first studied by van Heijst et al. (1990), who
found that shortly after the impulsive increase in angular velocity, cyclonic vortices
were formed at the downstream ends of the longer sidewalls. In a geometry with
aspect ratio 3:1, these vortices were seen to move towards the centre of the tank,
merging into a single cyclonic vortex. Alongside this vortex, anticyclonic vortices
appeared, resulting in a stable pattern of three counter-rotating vortices. Van Heijst
et al. attributed the inward motion to the deformation of the free surface caused by
the rotation of the fluid. This assertion seemed to be confirmed by later experiments. It
was found both experimentally and numerically (van de Konijnenberg et al. 1994; Suh
1994) that at low angular velocities, merging does not occur. In such experiments, a
similar pattern of three counter-rotating cells appears, but with an anticyclonic vortex
in the centre. However, more recent experiments performed with very high angular
velocities show that a second transition between merging and non-merging exists. In
certain experiments, merging does no longer occur, an observation challenging the
assertion by Van Heijst et al.

This paper presents results of a number of spin-up experiments from rest in two
rectangular geometries. Emphasis is put on the influence of the final angular velocity
Ω on the evolution of the flow field. The final angular velocity enters the spin-up
problem through two independent parameters: the Reynolds number Re = ΩL2/ν on
the one hand, and the Froude number F = 4Ω2L2/gH on the other hand. The Froude
number represents the free-surface effect, and is a measure of the ratio between the
Rossby radius (gH)1/2/2Ω and the size of the tank. The experiments indicate that the
qualitative evolution of the flow field depends on both parameters: for low angular
velocities the flow is mainly determined by the Reynolds number, whereas for high
angular velocities the flow also depends on the Froude number. In the context of
rotating flows, often the Ekman number is used instead of the Reynolds number,
in particular if emphasis is put on the spin-up time scale H/(νΩ)1/2 = E−1/2Ω−1.
However, in spin-up in rectangular tanks the finite depth of the fluid is noticeable
only at late times, when flow separation and vortex formation and possibly vortex
merger have already taken place. For this reason we prefer to use the Reynolds
number in this paper.

In §2, the experimental set-up is described. In §3, an analytical expression for
the stream function of the starting flow is derived, in excellent agreement with
experimental results. In §4, spin-up in a square tank is studied. For this geometry
the flow appears to be dominated by an anticyclonic vortex in the centre of the
tank. In §5, the aspect ratio of 9:4 is studied in more detail. This section contains a
sequence of four experiments differing only in the final angular velocity Ω. In §6, the
qualitative influence of bottom topography on the two-dimensional vortex motion
during spin-up process is investigated experimentally. Since the bottom topography
is analogous with the deformation of the free surface, these experiments can be used
to distinguish the influence of the Reynolds number and free-surface deformation in
experiments with high angular velocity.
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2. Experimental set-up
The spin-up experiments were performed by using a tank filled with tap water,

placed centrally on a rotating table. At t = 0, the angular velocity of the table was
suddenly changed from Ω − ∆Ω to Ω, and was thereafter kept at this value during
the experiment. It was verified that fluctuations in the final angular velocity are very
small compared with the final angular velocity used in the experiments. Two tanks
were used: a square tank with sides 2L = 80 cm, filled to a depth of 20 cm, and a
rectangular tank with length 2L = 88.6 cm and width 2B = 38.9 cm, filled to a depth
of 35 cm. The latter geometry was chosen because of its tendency to lead to an array
of three vortex cells that may have either orientation, depending on whether or not
vortex merger occurs early in the experiment. This makes this aspect ratio convenient
to demonstrate the influence of the final angular velocity on the spin-up flow. In
the square tank the angular velocity was increased from 0 to 0.24 rad s−1 and from
0 to 1.0 rad s−1, corresponding to a Rossby radius of 2.9 and 0.70 m, respectively.
In the rectangular tank the angular velocity was increased from rest to 0.035, 0.24,
1.0 and 1.7 rad s−1, corresponding to a Rossby radius of 26, 2.1, 0.93 and 0.54 m,
respectively.

Quantitative results were obtained with small tracer particles floating on the surface
of the fluid. Dye was added to the water in order to increase the contrast between
the fluid and the particles. First, a video recording of the flow was made with a
video camera corotating with the tank. Then, after the experiment, the recording
was processed by a PC equipped with a frame grabber. For this purpose an adapted
version of the DigImage system developed by Dalziel (1992) was used. This is an
image processing system that allows the tracking of particles in a cycle of three
stages: (i) a sequence of 16 video images is captured and stored in the memory of the
frame grabber; (ii) in each image, particles are located, this procedure being based
on a number of user-defined criteria such as brightness and size; (iii) particles in
subsequent images corresponding to the same physical particle are identified. In this
procedure, matchings at earlier times are used to estimate the positions of the particles
in the next video frame. After the particle paths have been obtained, the positions
are stored, and the cycle is repeated. Further processing of these data was done
by an extension to the DigImage software developed by van der Plas (1994). This
option provides the possibility to extract data files containing the particle velocities
from the data file created by the particle tracking routine. The vorticity was obtained
by matching the data with spline functions and manipulating the coefficients of this
expansion. The stream function was calculated from the vorticity by using a Poisson
solver. In this way the stream function of the solenoidal component of the velocity
field is calculated, which is more elegant than applying integration techniques if the
flow is not exactly divergence free. According to the amount of scatter in graphs of
the vorticity versus the stream function if the flow is almost steady (see e.g. figure 3
at t = 960 s), the errors in the experimental data are of the order of a few percent.
For more detailed information about the data-processing method, see Nguyen Duc
& Sommeria (1988).

In addition to those with particles, experiments were performed with a small
amount of dye added to the otherwise clear tap water. In this way, a qualitative
impression of the flow field could be obtained. Except for the case of spin-up from
rest to 0.035 rad s−1, the flow was seen to be turbulent shortly after the increase
in angular velocity of the tank; however, the flow always relaminarized early in the
experiment, and remained approximately two-dimensional afterwards.



192 J. A. van de Konijnenberg and G. J. F. van Heijst

The experimental flow field can be disturbed by several effects. Small quantities
of surface-active matter can lead to an irregular, asymmetric motion at the surface,
especially at low angular velocities. This problem was overcome by adding a small
amount of wetting agent to the water. This causes a reduction of the surface tension,
making the observed flow more symmetric and smooth.

Temperature differences in the water in the tank, possibly caused by evaporative
cooling at the free surface, the heat produced by the drive mechanism of the table
or temperature differences between the water and the laboratory air, can drive weak
convective flows (see e.g. Boubnov & Golitsyn 1986; Boubnov & van Heijst 1994). In
many experiments, it was observed that at later times the flow field becomes irregular,
with a tendency for small, axially aligned vortices to appear. This effect was reduced
by allowing the water to assume room temperature over a period of at least 12 hours,
and by using a (transparent) rigid lid on top of the tank, which was typically 10 cm
above the level of the free surface. Such a lid was used in all experiments with a
spin-up time scale larger than five minutes.

3. Starting flow
The flow immediately after the impulsive increase in angular velocity is charac-

terized by a uniform vorticity −2Ω in a system corotating with the tank. Since the
vorticity is related to the stream function by

ω = −∇2ψ, (3.1)

this leads to a Poisson equation for the stream function ψ of the flow relative to the
rotating tank:

∇2ψ = 2Ω. (3.2)

Because of the zero-normal-flow condition, the sidewall boundary coincides with a
streamline, the stream function of which is taken to be zero. The problem for ψ is
solved by first finding a convenient particular solution ψpart that takes away the inho-
mogeneous right-hand side of (3.2), and subsequently solving the remaining Laplace
equation for ψ − ψpart, with inhomogeneous boundary conditions to compensate for
the non-zero values of ψpart at the sidewalls. The resulting solution can be written as

ψ(x, y) = Ω(x2−L2) +
4ΩL2

π3

∞∑
n=0

(−1)n

(n+ 1
2
)3

cos(n+ 1
2
)πx/L

cosh(n+ 1
2
)πy/L

cosh(n+ 1
2
)πB/L

. (3.3)

This expression is also valid for B > L, and could have been written equally well with
x exchanged with y and, simultaneously, B exchanged with L; the only difference
would be a slightly different convergence speed for a given aspect ratio L/B. A similar
expression was derived earlier by van Heijst et al. (1990); our version is somewhat
simpler because of the more convenient choice of coordinate system. In turn, the
solution by van Heijst et al. appeared later to be a rediscovery of a solution by Stokes
(1843) for the flow in a moving rectangle in a non-rotating coordinate system.

A numerical evaluation of (3.3) up to 10 terms is compared with experimental
data in figures 1 and 2. Although the experimental data are slightly asymmetric with
respect to the centre of the tank, the analytical and experimental results are in good
agreement.
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Figure 1. Starting flow in a rectangular tank with length 88.6 cm and width 38.9 cm according to
(3.3) and to an experiment in which the angular velocity was increased from 0 to 0.035 rad s−1.
The analytically determined stream function is represented by the graded shading. The arrows
correspond to particles floating on the free surface as they were tracked by the DigImage system.
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Figure 2. Velocity profiles at y = 0 (a) and x = 0 (b) of the starting flow in a rectangular tank with
length 88.6 cm and width 38.9 cm according to (3.3) and to measurements at the free surface. The
solid curves correspond to the analytical solution, the filled circles to the experimental results.

4. Spin-up in a square tank
The experiments discussed in this section were performed in a tank with sidewalls

with length 2L = 80 cm and a fluid depth of 20 cm. Experimental results of spin-
up from rest to 0.24 and to 1.0 rad s−1 are presented in figures 3 and 4. The
graphs for t = 0 correspond to the starting flow. Close to the boundaries (ψ close
to zero) the data of the vorticity deviate from the theoretical uniform profile. This
difference is caused by the finite distance from the sidewall to the nearest particles: the
experimental method does not resolve structures smaller than the distance between
the particles or from the sidewall to the particles. In all experiments, the zero-velocity
condition is imposed by adding zero vectors along the boundary. In the algorithm for
computation of the vorticity, a shear layer with thickness equal to the distance from
the sidewall to the nearest particles is assumed. Since the velocity close to the sidewall
is higher than in the centre, this boundary layer corresponds to a rather broad stream
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Figure 3. Particle paths and ω(ψ)-scatterplots for spin-up from 0 to 0.24 rad s−1 in a square tank
with sides 2L = 80 cm and depth H = 20 cm. The lengths of the particle paths for the different
pictures are not representative of the speeds of the particles, but were chosen to yield a good
impression of the velocity field. The time has been non-dimensionalized with τ = H/(νΩ)1/2.
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Figure 4. As in figure 3, but now for spin-up from 0 to 1.0 rad s−1.
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function interval. The shear layer is only present at t = 0; at later times the limited
spatial resolution is of less importance.

The starting flow quickly loses its initial appearance: the separated flow is unstable,
and dye visualizations indicate that even in the 0 → 0.24 rad s−1 experiment, the
cyclonic vortices are three-dimensionally turbulent. Because of this turbulence, and
the fact that in a square tank they are relatively weak, the corner vortices disappear
quickly. The time scale on which the turbulence disappears is of the order of several
minutes. By this time the flow is dominated by an approximately circular anticyclonic
core vortex. The core behaves in much the same way as in the case of spin-up in
a circular tank discussed by van de Konijnenberg & van Heijst (1995). Initially, a
large part of the domain has relative vorticity −2Ω, but due to the inward secondary
motion caused by the Ekman-pumping mechanism, this region decreases slowly in
size.

The curvature of the ω(ψ)-graph changes in the course of the experiment, an effect
caused by the nonlinearity of the Ekman suction term in the equation for the relative
vorticity. Consider the two-dimensional vorticity equation in a system rotating with
angular velocity Ω, given by

∂ω

∂t
+ u · ∇ω = −(ω + 2Ω)∇ · u+ ν∇2ω; (4.1)

where u denotes the relative velocity in the horizontal plane, and ω is the relative
vorticity. Although the three-dimensional flow is assumed to be strictly incompressible,
the vorticity equation is given here in its compressible form. The reason is that ∇ ·u is
slightly non-zero because of the Ekman pumping; the term containing ∇·u represents
the vortex stretching/squeezing due to the small vertical velocity at the top of the
Ekman layer. It was shown by Greenspan & Howard (1963) that this Ekman pumping
velocity is a linear function of the relative vorticity if the flow is linear, that is, if the
relative velocities are very small. Numerical calculations by Rogers & Lance (1960)
suggest that this linear dependence is a reasonable approximation for moderately
nonlinear flows as well, a property used by Wedemeyer (1964) to obtain an analytical
expression for the velocity field of nonlinear spin-up in a circular container. Since
the Ekman pumping velocity is proportional to the two-dimensional divergence, (4.1)
is approximately quadratic in ω. This implies that high relative vorticities will decay
rapidly, whereas for ω = −2Ω, Ekman suction is ineffective, and the vorticity can
increase through viscous diffusion only.

During the first stages of the experiment, the vorticity in the centre of the tank is
still equal to −2Ω, unaffected by Ekman pumping. In contrast, the positive vorticity
in the outer regions decreases rapidly. As a result, the appearance of the ω(ψ)-graphs
changes in the course of the experiment, becoming flatter in the positive-vorticity part,
and steeper in the negative-vorticity part. This interpretation agrees with a general
property of the ω(ψ)-graph of its slope being inversely proportional to the area of
the vortex structure it represents†.

† Consider a circular vortex with radius a and a linear relation between vorticity and stream
function, so that ω = k2ψ. In that case one finds that ψ(r) = AJ0(kr) and ω(r) = Ak2J0(kr).
Imposing ∂ψ/∂r = 0 at r = a leads to k = j1n/a, with j1n the nth zero of J1. Such vortices are
known as Bessel vortices. The solution with n = 1 (k = 3.8317/a) has a unidirectional flow and is
often used as a convenient vortex model in analytical and numerical investigations. For all Bessel
vortices, the slope k2 of the ω(ψ)-graph is inversely proportional to a2. Since the stream function is
defined up to an arbitrary constant, this argument can be applied to any linearly ending branch in
a ω(ψ)-graph.
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Figure 5. Trajectory of the centre of the anticyclonic vortex in the square tank for a spin-up
experiment from 0 to 1.0 rad s−1. The dots represent the position of the vortex centre after 30 s
intervals, starting from t = 240 s at the centre of the tank and ending at t = 1080 s near one of the
sidewalls.

For high angular velocities there is an outward motion of the central anticyclonic
vortex, as shown by the particle paths at 720 s in figure 4. This effect is probably
caused by the depth gradient caused by the deformation of the free surface. According
to earlier research (McWilliams & Flierl 1979; Carnevale, Kloosterziel & van Heijst
1990), both cyclonic and anticyclonic vortices show a horizontal drift in the presence
of bottom or surface topography. Most of the investigations of rotating flows over
topography were inspired by applications in a geophysical context. The terminology
used in these papers is still reminiscent of this geophysical background. Using the
analogy between rotating flows over topography and geophysical flows involving
a latitude dependence of the Coriolis parameter, the shallow part of the tank is
commonly referred to as the ‘north’ and the deeper part as the ‘south’. Experimental
and numerical investigations have revealed that small cyclonic vortices on large-scale
topography show a drift towards the northwest, and anticyclonic vortices towards the
southwest. In the square tank, the centre is the shallower part and corresponds to the
north, the outer regions near the sidewalls and in the corners are the deeper parts
and correspond to the south. This means that small cyclonic vortices tend to move
towards the centre, whereas small anticyclonic vortices tend to move away from it.

Although in this case the anticyclonic vortex is comparable in size with the length
scale of topography variations, the assumption that its motion is determined by
the rules found for smaller vortices may lead to a qualitative understanding of the
observed drift in figure 4. In order to make a qualitative comparison between this
drift and the previously mentioned results of earlier research, measurements of the
position of the centre of the core were performed for a spin-up experiment from 0
to 1.0 rad s−1; the results are given in figure 5. The data were obtained by manually
tracking the position of a small particle floating on the surface of the fluid close
to the centre of the core. Owing to the slightly off-centred position of the particle
and the rotation of the core, the particle followed a cycloidal motion instead of
the smooth curve represented in figure 5. Since the excursions caused by the fast
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revolutions around the core centre were much smaller than the distance between the
spiral arms, the position of the centre could be estimated accurately. Dye was added
in the beginning of the experiment to investigate the deformation of the core due to
interaction with the sidewalls. Deformation of the core due to secondary vorticity at
the sidewalls was seen to become important after approximately 18 minutes; by that
time the core has become very weak due to the Ekman-pumping mechanism.

According to figure 5, the core moves outward in a clockwise spiroid motion to
the local southwest. This agrees qualitatively with the results of Carnevale et al.
(1991). Experiments were conducted using bottom topography with the deeper part
in the centre to confirm that the instability of the central position of the core is
induced by topography. According to the ‘southwest’ rule for anticyclonic vortices,
this implies that the position of the core in the centre of the tank is stabilized, and
indeed no outward motion was observed in these experiments. Owing to the motion
of the anticyclonic vortex, the flow in the 0→ 1.0 rad s−1 experiment loses part of its
quasi-steady nature, as can be seen from the scatter in the ω(ψ)-graph at 720 s (figure
4). It has been verified that the scatter in the left-hand side of the graph disappears
in a coordinate system that moves with the anticyclonic vortex.

Though present for any angular velocity, in the geometry described in this section,
the instability of the core is significant for angular velocities larger than 1 rad s−1 only.
For a fluid depth of 20 cm this corresponds to a maximum surface elevation of only a
few percent. At a higher angular velocity, the deformation of the surface is stronger,
and the outward motion is faster. In that case, the core has more energy left when it
reaches the sidewall, and its radial velocity is higher. The core then induces positive
vorticity at the sidewall, forming a small cyclonic vortex that combines with the core
to form an asymmetric dipole. This structure travels in a circular path through the
tank until it hits the sidewall once again. During this process the core dissipates its
energy by Ekman pumping, filamentation and friction caused by the two-dimensional
motion, until finally all motion has decayed and the spin-up process is complete.

5. Spin-up in a tank with aspect ratio 9:4
5.1. Spin-up from 0 to 0.035 rad s−1

The experimental results for the starting flow and the further evolution of the flow
field are presented in figure 6. Soon after the start of the experiment, cyclonic vortices
are formed in each corner of the flow domain. The vortices in the downstream
corners of the shorter sidewalls are weak, and disappear quickly. Owing to the high
velocities at the longer sidewall and the correspondingly stronger advection towards
the downstream corners, the vortices in the downstream corners of the longer sidewalls
become much stronger, and grow in size until they obtain a diameter comparable to
the width of the tank. This results in a three-cell configuration, which appears to be
stable: the vortices do not drift away or change in size or shape, but decay slowly
from the combined effect of the Ekman-pumping mechanism and viscous decay in
the horizontal plane.

The flow pattern consisting of these two cyclonic vortices, together with the central
anticyclonic vortex, resembles a tripolar vortex, such as described by van Heijst &
Kloosterziel (1989) and van Heijst, Kloosterziel & Williams (1991). This vortical
structure tends to rotate until the walls of the tank inhibit further motion. However,
the tripolar vortex discussed by van Heijst et al. (1991) moves around in an infinite
domain, whereas in this case, the presence of sidewalls makes the situation more
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complex. Additional experiments indicate that the tendency to rotate depends on the
aspect ratio of the tank. In similar experiments in a tank of 120 × 40 cm, hardly any
rotation was observed, and the cyclonic vortices remain close to the symmetry-axis.

The scatterplots in figure 6 provide information about the flow field that cannot
be easily derived from the contour graphs. At t = 0, the flow has a uniform vorticity,
leading to the single horizontal branch at ω/2Ω = −1. At t = 120 s, 180 s and
360 s at the left-hand side of the graphs this horizontal branch is still present, but
the graphs take on a different appearance during the further evolution of the flow.
In particular, points with ψ > 0 appear, corresponding to the formation of cyclonic
vortices. At early times there is a significant amount of scatter, but a well-defined
branch eventually emerges. The right-hand end of this branch corresponds to the
centres of the cyclonic vortices; the place where it sprouts from the vertical branch
at ψ = 0 corresponds to the outer parts of the cyclonic vortices. The collapse to a
single branch implies that these vortices become increasingly stationary in the course
of the experiment. The points at ψ = 0 with strongly positive or negative vorticity
correspond to points close to the sidewall, at the edges of strong vortices; from the
vorticity graphs in figure 6 it can be seen that each of the three dominating vortices
induces oppositely signed vorticity at the sidewalls. The branch at the left-hand side
of the scatterplots corresponds to the central anticyclonic cell. This vortex rapidly
loses its uniform vorticity profile, an effect that can be ascribed to viscous diffusion,
perhaps in combination with Ekman suction. Characteristic of the scatterplots is
that the two dominating branches are staggered; each branch consists of a positive
and a negative vorticity part. This behaviour can also be seen from the fact that
each vortex in figure 6 is surrounded by oppositely signed vorticity. The staggering
between the branches indicates that this oppositely signed vorticity is not only present
close to the sidewalls, but also between the cells: each vortex is essentially an isolated
structure.

The approximately linear appearance of the ω(ψ)-graph at 1440 s in figure 6 makes
it possible to check the relation between ∂ω/∂ψ and the size of each vortex. Since
a Bessel vortex with radius a has ∂ω/∂ψ = j2

11/a
2 = 14.7/a2 (see footnote in §4),

we would expect ∂ω/∂ψ to be close to 14.7/B2. An actual measurement leads to
∂ω/∂ψ = 14/a2 for the anticyclonic vortex and ∂ω/∂ψ = 17/a2 for the cyclonic
vortex. In view of the cyclonic vortex being somewhat smaller than the anticyclonic
vortex, these results are quite plausible.

Unfortunately, the very low angular velocity makes it difficult to shield the flow
from external effects such as heating of the fluid by the drive mechanism of the
rotating table, the laboratory air or the lighting used to illuminate the particles. As a
result, the vorticity and stream function at t = 960 s and t = 1440 s are less accurate
than other results presented in this paper. A comparison with numerical results (van
de Konijnenberg et al. 1994) indicates that at these times, the measured cyclonic
vortices are stronger than is to be expected in the absence of external effects. In
previous experiments, the flow pattern sometimes had not decayed noticeably after
several hours, indicating that some driving effect is present that is able to overcome
the damping caused by viscosity and Ekman suction. The experiment in this section
was performed in a tank placed inside a bigger tank that was also filled with water.
The extra layer of water acts as a buffer for external heating and cooling, and the
quality of the results (estimated from the symmetry of the flow field and the amount
of scatter in the ω(ψ)-plots) was seen to improve. Nevertheless, in all experiments at
such low angular velocities the accuracy of the results was seen to deteriorate after
20 or 30 minutes.
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5.2. Spin-up from 0 to 0.24 rad s−1

The outcome of the experiment changes drastically if a final angular velocity of 0.24
rad s−1 instead of 0.035 rad s−1 is taken, as shown in figure 7. The consequences of
a higher Reynolds number become manifest soon after the start of the experiment.
Large cyclonic vortices are formed in a similar way as in the experiment from 0
to 0.035 rad s−1, but also smaller structures appear: the smooth strips of positive
vorticity from the sidewall to the core are seen to break up into smaller vortices
merging into the main corner vortex later on.

A more striking effect, however, is the merging of the cyclonic vortices into one
strong vortex in the centre of the tank. This phenomenon is observed only if
the vortices approach each other closely enough, a condition well satisfied for this
geometry; for this Reynolds number, the critical aspect ratio beyond which merging
of the corner vortices no longer occurs appears to be about 4:1. Compared to the
spin-up time scale, vortex merging is a rapid process. According to the streamline
patterns, the merging takes place between 100 and 110 s. However, the vorticity
graphs indicate that the merging is not quite completed at t = 120 s: the remnants
of the original vortices can still be distinguished in the core of the newly formed
vortex. As these parts wrap around each other more closely, the amount of scatter in
the ω(ψ)-graphs decreases, until a well-defined relationship remains; this can be seen
in the scatterplot at t = 240 s. A similar merging of the cyclonic corner cells was
observed earlier by van Heijst et al. (1990) in a tank with an aspect ratio of 3:1.

Although it is not clear whether a simple argument can be given why merging
takes place in this experiment, and not in the experiment from 0 to 0.035 rad s−1,
it seems likely that this difference is coupled with the Reynolds number. In the
0 → 0.035 rad s−1 experiment the cyclonic vortices may be damped too strongly to
develop the high velocity gradients coupled with the merging process, or the vorticity
of the corner vortices in the 0 → 0.24 rad s−1 experiment may be more concentrated,
making them smaller and more mobile. Van Heijst et al. (1990) attributed the
inward motion of the cyclonic vortices to an imbalance between centrifugal and
Coriolis forces caused by free-surface deformation and the topography-induced drift
according to the rules found for small vortices discussed in §4. However, in subsequent
sections it is shown that free-surface deformation in combination with the presence
of the sidewalls gives rise to the opposite behaviour.

At late times the central cyclonic vortex is affected by the interaction with its
surroundings, and loses some of its stationarity. The graphs at t = 480 s show
that the vortex becomes elliptical; the axes of the ellipse slowly rotate in a cyclonic
direction. Dye visualizations indicate that the non-stationarity of the cyclonic vortex
involves filamentation and mixing of the outer layers with the surroundings. This
interaction process affects the ω(ψ)-scatterplot as well. The shape of the branch
corresponding to the centre of the cyclonic vortex at t = 480 s can still be recognized
from the previous scatterplot, but the part corresponding with the outer region of
the cyclonic vortex (0 < ψ/4ΩB2 < 0.04) is affected in its shape and in the amount
of scatter. The anticyclonic vortices alongside the central cyclonic cell are less stable
than in the 0 → 0.035 rad s−1 experiment and keep changing in size and shape.
Nevertheless, they show the same preference for a position off the horizontal axis, but
since the central cell is now cyclonic, the flanking cells are now shifted in a cyclonic
sense.

Both the scatterplots at t = 60 s (before the merging) and at t = 240 s (after the
merging) show an upward-curving relationship between ω and ψ. This reminds one of
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Figure 7. Experimental results for spin-up from 0 → 0.24 rad s−1 in a rectangular tank with
length 0.886 m, width 0.389 m and depth 0.35 m.
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results obtained by Montgomery & Joyce (1974) and Robert & Sommeria (1991) for
the relationship between ω and ψ of the most likely vortex structure in inviscid flows.
Their methods are technically different, but both rely on the counting of allowable
dynamical states. The final equilibrium state of an initial vorticity distribution is
calculated by introducing and maximizing the entropy of the vorticity field. In the
method by Montgomery & Joyce, point vortices are used to represent the vorticity
field. A well-known result of this approach is that if the vorticity distribution consists
of the same number of positive and negative point vortices with equal strength, the
relation between ω and ψ becomes a hyperbolic sine:

ω = ω0 sinh(βψ). (5.1)

The method by Robert & Sommeria is more complex and departs from a regular
vorticity distribution. If the initial flow field consists of thin shear layers in an
otherwise irrotational environment, such that the distribution of positive and negative
vorticity is symmetric, the hyperbolic sine result of Montgomery & Joyce is recovered.

The vorticity distribution in a spin-up experiment, evolving from singular positive
values at the sidewalls, meets this condition to a certain extent. It is therefore
interesting to note that the ω(ψ)-relations of newly formed cyclonic vortices in many
spin-up experiments in this paper are characterized by a sinh-like upward curvature,
in particular if the Reynolds number is high; if the vortices are very small or if
the angular velocity is very low, the relationship becomes approximately linear. The
cause of this difference may be the better conservation of the singularity of the initial
vorticity distribution if the Reynolds number is high, or the outer parts of the vortices
being turbulent and therefore more homogenized.

5.3. Spin-up from 0 to 1.0 rad s−1

Results of the 0 → 1.0 rad s−1 experiment are presented in figure 8. Initially, the
experiment looks essentially the same as the 0 → 0.24 rad s−1 experiment discussed
in §5.2. The corner vortices are formed in much the same way, and merging occurs
at approximately the same dimensionless time Ωt. However, where in the 0 → 0.24
rad s−1 experiment the resulting cyclonic vortex remained in the central position,
in this case it appears to drift towards one of the southwest corners. A simple
explanation for this behaviour can be given in terms of the influence of the free
surface in combination with the effect of the sidewalls. Assuming that the central
vortex is slightly off-centred, it will tend to move to the northwest, that is, in a
clockwise spiroid motion towards the centre of the tank. However, as the vortex
moves in westward direction, it approaches one of the longer sidewalls, and is
deflected away from the centre. Apparently, this effect overcomes the northward
component of the topographically induced drift, so that the central position of the
cyclonic vortex becomes unstable. The vorticity graphs at t = 72 s and 96 s show that
the centre of the cyclonic vortex is indeed shifted to one of the longer sidewalls. The
drift of cyclonic vortices to the southwest corner is typical of spin-up experiments
with sufficiently high angular velocities. It will be shown in §5.4 that this effect may
even prevent the occurrence of merging. The hypothesis that the southwest drift of
cyclonic vortices is caused by free-surface curvature is confirmed by the following
three observations.

(a) The effect becomes stronger if the final angular velocity is increased.
(b) The effect becomes stronger if the depth is decreased, which is difficult to

explain if the free surface does not play any role.
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Figure 8. Experimental results for spin-up from 0 → 1.0 rad s−1 in a rectangular tank with length
0.886 m, width 0.389 m and depth 0.35 m.
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(c) Experiments at a lower angular velocity but with bottom topography resem-
bling the deformation of the free surface show a similar behaviour. Some of these
experiments are discussed in §6.
The small amount of scatter in the ω(ψ)-graph indicates that the flow is quasi-steady,
but the flow pattern keeps changing in the course of the experiment, and although
some states exist for many vortex turnover times, no definitive streamline pattern is
observed in this experiment.

5.4. Spin-up from 0 to 1.7 rad s−1

An angular velocity of 1.7 rad s−1 is the highest value that could be obtained with the
available experimental equipment. At this rotation speed the difference in water height
between the centre and the corners is several centimetres, or about 10% of the total
depth. In about 20% of the experiments performed at this angular velocity, merging
of the cyclonic corner vortices no longer occurs. If the fluid depth is decreased, this
percentage increases to 100%, reflecting a stronger impact of the relative changes in
depth due to a deformation of the surface. Thus, one may expect that for spin-up in
the geometry discussed in this subsection, a value of 1.7 rad s−1 is somewhat below
a critical value beyond which the occurrence of merging becomes unlikely. Neither
the critical value for the transition from non-merging to merging at 0.1 rad s−1 nor
the critical value for the transition from merging to non-merging due to free-surface
effects is very well-defined. In the former case it may be unclear whether or not
merging occurs because the process is incomplete and the cyclonic vortices do not
really wrap around each other; in the latter case the difference between the occurrence
and non-occurrence of merging is much more distinct, but turbulence introduces a
certain randomness in the flow, suggesting a statistical interpretation of the critical
value.

In figure 9, results are shown of one of the experiments in which merging does
not occur; this is the more unlikely outcome of the experiment, but more illustrative
than the more regular evolution, which is similar to the results of the 0→ 1.0 rad s−1

experiment (figure 8). The cyclonic corner vortices are formed very rapidly, and
the central anticyclonic region is reduced to a weak, deformed structure. Instead of
moving towards each other, the cyclones now move to the southwest corners, the
anticyclonic cell being re-established in the process. The cyclonic vortices are affected
by both the topography of the free surface and the presence of the sidewalls, and
move in more or less circular trajectories (see figure 10) through the deeper parts
of the tank. Then, after 50 turnover times, they suddenly and simultaneously move
in a matter of seconds to the centre, and still merge into a single vortex. In this
particular experiment, the flow loses some of its symmetry during this merging; in the
ω(ψ)-graph at t = 120 s in figure 9, one can see a secondary branch corresponding
to a small vortex in the right-hand side of the tank that has no counterpart in the
left-hand side. However, after a long time the flow regains most of its symmetry, and
remains quasi-steady thereafter. In this regime one can observe a gradual evolution of
the branch shape in the ω(ψ)-graph due to Ekman suction. Additional experiments
have been performed to check whether the retarded inward motion of the cyclonic
vortices is reproducible. Most of these experiments were performed with smaller
depths in order to avoid early merging. In all these experiments a similar behaviour
was observed.

It is not entirely clear why the cyclonic vortices still move to the centre after
spending such a long time in the deeper parts. The streamline and vorticity graphs
at t = 88 s might give the impression that the motion of the cyclonic vortices is
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Figure 9. Experimental results for spin-up from 0 → 1.7 rad s−1 in a rectangular tank with length
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Figure 10. Trajectories of the centres of the cyclonic vortices from their formation
at t = 0 to the merging at t = 90 s.
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Figure 11. Occurrence of merging of the corner vortices in a tank of 88.6 × 38.9 cm filled to a
depth of 35 cm. The symbols + and − indicate that merging does or does not occur, respectively.

driven by their image vortices, but this effect tends to drive the vortices back into
the corners. One can think of a number of causes for this retarded merging. From
t = 8 to 88 s, the strength of the cyclonic vortices, measured by the extremal value
of the stream function, has decayed by a factor 8, whereas the extremal value of the
stream function of the central anticyclonic vortex has increased by a factor 2. Thus,
the regions with cyclonic vorticity become increasingly more passive, until they are
taken along with the more persistent anticyclonic flow, which at t = 88 s fills nearly
the entire domain.

Another cause might be that the motion rule for vortices over topography does
not apply under all circumstances. Obviously the drift will depend on the degree of
nonlinearity, the vorticity distribution of the vortex under consideration and the shape
of the topography. So far it has been assumed that the free surface is always parabolic,
which at the beginning of the experiment is a very crude assumption. Owing to the
decay of vortex motion, the deviation from a parabolic surface gradually becomes
smaller, which will have consequences for the vortex drift. However, it seems unlikely
that this effect alone is strong enough to cause the sudden and simultaneous motion
of the cyclonic vortices toward the centre.

6. Influence of free-surface deformation
In order to investigate the role of topography for the drift of cyclonic vortices,

two types of additional experiments were performed in the 88.6 × 38.9 cm tank.
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(a)

(b)

(c)

(d)

Figure 12. Merging of the corner vortices in a tank of 88.6 × 38.9 cm with a depth of 35 cm,
covered with a rigid lid. The white dots correspond to paper particles at the bottom of the tank.
The images were taken at 8, 14, 18 and 21 s, (a)–(d) respectively.

First, we used bottom topographies resembling the deformation of the free surface.
These topographies consist of a false bottom made of two rigid plates as represented
graphically in figure 11. In all experiments, the depth in the absence of the topography
is 35 cm. The topography has a maximum elevation of 5 cm, which is of the same
order as the deformation of the free surface at an angular velocity of 1.7 rad s−1. The
experiments with the sloping topography confirm the conjecture about the influence
of the free surface. The topography with the highest point at the centre is similar to
the deformation of the free surface, and so is the outcome of the evolution: at all
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angular velocities, merging is prevented, and the flow field shows the same irregularity
observed in experiments with high angular velocities and a flat bottom. The second
topography is the reverse of the deformation of the free surface. In this case merging
appears to be encouraged; the cyclonic vortices now drift to the centre of the tank,
being the deepest part in this experiment.

Second, we repeated the 0 → 1.7 rad s−1 experiment in a tank with a rigid lid.
In this way, deformation of the free surface is eliminated altogether. However, the
presence of a rigid lid gives rise to a second Ekman layer. The influence of the
Ekman layer at the rigid lid on the secondary flow can be eliminated by doubling
the fluid depth, but unfortunately we did not have a tank at our disposal that was
deep enough to realize this. Instead, we used a depth of 35 cm, the same as in the
previous experiments. As the spin-up time scale H/(2(νΩ)1/2) = 134 s of the 0 →
1.7 rad s−1 experiment with rigid lid is still large compared with the time at which
merging takes place, a comparison with the earlier experiments is still useful. As
floating particles could not be used in this case, we seeded the fluid with small paper
particles that were slightly heavier than water. These particles tend to accumulate at
the centre of cyclonic vortices, and thus indicate whether or not merging occurs. The
experiment was carried out 20 times, and in all cases merging occurred. The results of
one of these experiments are shown in figure 12. The images lack the quality required
for particle tracking, but show clearly the motion of the cyclonic vortices. At 8 s,
two cyclonic vortices have been formed at two opposite corners of the tank. These
vortices move towards the centre, and rapidly wrap around each other, resulting in a
single cyclonic vortex. Thus, the experiments with a rigid lid confirm the conjecture
that the non-occurrence of merging in the case of a free surface fluid at high angular
velocities is caused by the curvature of the free surface.

7. Summary
The impulsive-spin-up flow in a rectangular tank can be divided into several stages.

The relative flow field at the beginning of the experiment is characterized by a uniform
vorticity −2Ω. The corresponding stream function as found by analytical means is in
excellent agreement with experimental observations.

After this initial stage, the flow separates from the sidewall, and generally becomes
organized into a small number of counter-rotating cells. The experiments confirm the
conclusion drawn by van Heijst et al. (1990) that the flow tends to evolve towards a
pattern consisting of an odd number of circular vortices that occupy the flow domain
optimally.

The evolution of the flow field depends in the first place on the Reynolds number
ΩL2/ν. This becomes clear from the results of §§5.1 and 5.2, concerning the spin-up
from rest to 0.035 rad s−1 resp. 0.24 rad s−1 in the same rectangular geometry. In
both cases, strong cyclonic vortices are formed in two corners of the tank within one
revolution time, but only in the experiment from 0 to 0.24 rad s−1 do these vortices
appear to merge into a single vortex.

However, the curvature of the free surface may affect the formation of this cellular
pattern, even if the elevation of the free surface is small compared with the depth
of the fluid. The curved surface acts as a topographic plane, which is known from
earlier research to induce a drift in individual vortices. This may be a determining
factor for critical events such as merging of the cyclonic corner vortices early in the
experiment, or may even cause a break-up of the pattern of aligned vortices that
may be quasi-steady if the angular velocity is lower. The vortex drift also depends
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on the presence of image vortices beyond the sidewalls. In particular, this may lead
to a motion of cyclonic vortices to the deeper part of the tank, in contrast with their
behaviour in an infinite domain. Thus, free-surface deformation is a discouraging
factor for merging of the cyclonic vortices that are formed in the corners of the tank
at the beginning of the experiment.

One of the authors (J. vd K.) gratefully acknowledges financial support from the
Dutch Foundation of Fundamental Research (FOM).
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